Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method
Rasul Mohebbi,
Amin Amiri Delouei,
Amin Jamali,
Mohsen Izadi and
Abdulmajeed A. Mohamad
Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, issue C, 642-656
Abstract:
In this paper, the two-dimensional forced convection heat transfer of non-Newtonian power-law fluid flow between two parallel plates filled with partially porous media is studied numerically using the thermal lattice Boltzmann method (TLBM). Shear-thinning (n=0.8), Newtonian (n=1.0), and shear-thickening (n=1.2) fluid are used to investigate the non-Newtonian behavior of power-law fluids. The porous media is prepared by the arrangement of circular obstacles. The effect of Reynolds numbers between 100Keywords: Thermal lattice Boltzmann method; Power-law non-Newtonian fluid; Forced heat convection; Circular obstacles; Porous media (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302729
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:525:y:2019:i:c:p:642-656
DOI: 10.1016/j.physa.2019.03.039
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().