EconPapers    
Economics at your fingertips  
 

Influential node ranking via randomized spanning trees

Zhen Dai, Ping Li, Yan Chen, Kai Zhang and Jie Zhang

Physica A: Statistical Mechanics and its Applications, 2019, vol. 526, issue C

Abstract: Networks portraying a diversity of interactions among individuals serve as the substrates(media) of information dissemination. One of the most important problems is to identify the influential nodes for the understanding and controlling of information diffusion and disease spreading. However, most existing works on identification of efficient nodes for influence minimization focused on centrality measures. In this work, we capitalize on the structural properties of a random spanning forest to identify the influential nodes. Specifically, the node importance is simply ranked by the aggregated degree of a node in the spanning forest, which reveals both local and global connection patterns. Our analysis on real networks indicates that manipulating the nodes with high aggregated degrees in the random spanning forest shows better performance in controlling spreading processes, compared to previously used importance criteria, including degree centrality, betweenness centrality, and random walk based indices, leading to less influenced population. We further show the characteristics of the proposed measure and the comparison with benchmarks.

Keywords: Node importance; Random spanning tree; Aggregated degree (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119302006
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119302006

DOI: 10.1016/j.physa.2019.02.047

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119302006