Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls
Ashkan Javadzadegan,
S. Hossein Motaharpour,
Abouzar Moshfegh,
Omid Ali Akbari,
Hamid Hassanzadeh Afrouzi and
Davood Toghraie
Physica A: Statistical Mechanics and its Applications, 2019, vol. 526, issue C
Abstract:
In the present study, the combined forced convection and radiation in a channel is numerically investigated by using Lattice-Boltzmann method (LBM). The effects of physical properties and radiative characteristics such as Peclet number, radiation parameter, emissivity coefficient, and also the absorption coefficient have been investigated. In order to validate the LBM numerical procedure, the results have been initially compared by using finite volume method (FVM). It is observed that, in all of the cases, there are proper coincidences between LBM and FVM results. The results of this study indicate that, by considering radiation heat transfer, the great contribution to the heat transfer geometrics has been studied and its rate changes depending on different parameters such as ε, RP, Pe and Pr. The increase of radiation parameter causes temperature enhancement and reduction of temperature gradient. By increasing the radiation parameter, the growth of thermal boundary layer enhances and its penetration to the central core of flow enhances significantly. The reduction of the emissivity coefficient of walls or the decrease of radiation from the walls causes the reduction of radiation absorption rate in channel. In high Pe numbers, the growth and penetration of thermal boundary layer to higher layers from the heated surface reduce significantly.
Keywords: Lattice Boltzmann method; Convection; Radiation; Emissivity coefficient (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711930651X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:526:y:2019:i:c:s037843711930651x
DOI: 10.1016/j.physa.2019.121066
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().