A novel ensemble classification model based on neural networks and a classifier optimisation technique for imbalanced credit risk evaluation
Feng Shen,
Xingchao Zhao,
Zhiyong Li,
Ke Li and
Zhiyi Meng
Physica A: Statistical Mechanics and its Applications, 2019, vol. 526, issue C
Abstract:
Significant research has been performed on credit risk evaluation, with many machine learning and data mining techniques being employed for financial decision-making. The back propagation (BP) neural network has been a popular choice for credit risk evaluation problems, but many studies have found classifier ensembles to be superior to single classifiers. In this paper, a novel ensemble model based on the synthetic minority over-sampling technique (SMOTE) and a classifier optimisation technique is proposed for personal credit risk evaluation. To mitigate the negative effects of imbalanced datasets on the performance of the credit evaluation model, the SMOTE technique is used to rebalance the target training dataset. The particle swarm optimisation (PSO) algorithm is employed to search for the best-connected weights and deviations in the BP neural networks. Based on the optimised BP neural network classifiers, an ensemble model is developed that combines the AdaBoost approach with the base classifiers. To ensure that the proposed model provides accurate and stable performance, we thoroughly explore and discuss the optimal parameters for the ensemble classification model. Finally, the proposed ensemble model is tested on German and Australian real-world imbalanced datasets. The results demonstrate that this model is more effective at processing credit data problems compared to the other classification models examined in this study.
Keywords: BP neural network; Credit risk evaluation; Ensemble classification model; PSO algorithm; SMOTE (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119306582
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:526:y:2019:i:c:s0378437119306582
DOI: 10.1016/j.physa.2019.121073
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().