Automatic identification of rapid eye movement sleep based on random forest using heart rate variability
Yitian Wang,
DaiYan Wang,
Lulu Zhang,
Cong Liu,
Jin Li,
Fengzhen Hou and
Chung-Kang Peng
Physica A: Statistical Mechanics and its Applications, 2019, vol. 527, issue C
Abstract:
There is broad evidence that the abnormality of rapid eye movement (REM) sleep may be an indicator of some diseases. The scientific identification of REM sleep thus plays a vital role in sleep medicine. Since the activity of autonomic nervous system (ANS) which can be reflected in heart rate variability (HRV) was associated with sleep states, we aimed to develop an automatic REM detecting system based on HRV analysis and machine learning. HRV signals which derived from 45 healthy participants were adopted and 69 HRV features were extracted and fed into a random forest (RF) classifier. We compared different strategies for the segmentation of HRV time series. The results showed a relative good classification performance by segmenting the whole record into overlapping sections, suggesting that the Surrounding Strategy overwhelms the Truncating one in RF based REM identification. Moreover, the classification performance exhibited a non-monotonic trend along with the length of the symmetric surrounding window. When there was 390 data points in such a window, we got the best performance to distinguish REM and non-REM sleeps with an accuracy of 0.84, a sensitivity of 0.80, a specificity of 0.88, a positive predictive value of 0.90, a negative predictive value of 0.85 and a kappa coefficient of 0.68. Our study showed the promising application of HRV-based methods in REM detecting, and furthermore, we threw light on the scientific segmentation of HRV signals in sleep staging. As the Surrounding strategy proposed in this study makes it possible to produce enough learning samples, our results may bring more impetus on machine learning-based algorithm, such as deep learning in this field.
Keywords: Heart rate variability; Random forest; Rapid eye movement sleep; Segmentation (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119305102
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119305102
DOI: 10.1016/j.physa.2019.121421
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().