Entropy generation analysis for a thin couple stress film flow over an inclined surface with Newtonian cooling
Samuel O. Adesanya,
Amanze C. Egere and
R.S. Lebelo
Physica A: Statistical Mechanics and its Applications, 2019, vol. 528, issue C
Abstract:
In this article, a computational approach to monitor entropy production in a fully developed gravity-driven couple stress film flow on an inclined heated surface subjected to convective cooling is examined. The free end of the thin film is maintained in a manner that follows the Newtonian law of cooling. Exact solutions of the dimensionless boundary-value problems (BVP) are obtained and utilized for the entropy expression and the heat irreversibility ratio along the heated plate. The effects of pertinent parameters on the flow and thermal build up are shown graphically and explained based on physical laws. Most importantly, the rate of heat transfer is shown to be a decreasing function of the couple stress inverse while the skin friction remains constant along the heated wall. The present computation is relevant in coating and drying processes and several metallurgical engineering.
Keywords: Thin film; Convective cooling; Couple stress; Inclined surface (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119307265
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:528:y:2019:i:c:s0378437119307265
DOI: 10.1016/j.physa.2019.121260
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().