Multi-scale entropy analysis and Hurst exponent
Saeid Mollaei,
Amir Hossein Darooneh and
Somaye Karimi
Physica A: Statistical Mechanics and its Applications, 2019, vol. 528, issue C
Abstract:
Several methods exist for measuring the complexity in a system through analysis of its associated time series. Multi-scale entropy appears as a successful method on this matter. It has been applied in many disciplines with great achievements. For example by analysis of the bio-signals, we are able to diagnose various diseases. However, in most versions for the multi-scale entropy the examined time series is analyzed qualitatively. In this study, we try to present a quantitative picture for the multi-scale entropy analysis. Particularly, we focus on finding relation between the result of the multi-scale analysis and the Hurst exponent which quantifies the persistence in time series. For this purpose, the fractional Gaussian noise time series with different Hurst exponents are analyzed by the multi-scale entropy method and the results are fitted to a decreasing q-exponential function. We observe remarkable relation between the function parameters and Hurst exponent. This function can simulate the result of analysis for the white noise to the 1∕f noise.
Keywords: Multi-scale entropy; Fractional Gaussian noise; Hurst exponent (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119307812
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:528:y:2019:i:c:s0378437119307812
DOI: 10.1016/j.physa.2019.121292
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().