A thermodynamical derivation of the quantum potential and the temperature of the wave function
L. Curcuraci and
M. Ramezani
Physica A: Statistical Mechanics and its Applications, 2019, vol. 530, issue C
Abstract:
In this paper a thermodynamical derivation of the quantum potential is proposed. Within the framework of Bohmian mechanics we show how the quantum potential can be derived, by adding an additional informational degree of freedom to the ordinary degrees of freedom of a physical system. Such a derivation uses the First Law of thermodynamics for this additional degree of freedom and basic equilibrium thermodynamics methods. By doing that, one may associate a temperature to each wave function. Features and behavior of this temperature in different situations is studied.
Keywords: Quantum potential; Thermodynamics (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119309288
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:530:y:2019:i:c:s0378437119309288
DOI: 10.1016/j.physa.2019.121570
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().