The concept of force in population dynamics
John Hayward and
Paul A. Roach
Physica A: Statistical Mechanics and its Applications, 2019, vol. 531, issue C
Abstract:
The area of population dynamics has a rich history of the development and analysis of models of biological and social phenomena using ordinary differential equations. This paper describes a method for understanding the influence one variable exerts on another in such models as a force, with the relative effects of these forces providing a narrative explanation of the curvature in variable behaviour. Using the stock/flow form of a model, a symbolic notation is developed that identifies the forces with the causal pathways of the model’s feedback loops. A force is measured by its impact, defined as the ratio of acceleration to rate of change, computed by differentiation along its associated pathway between variables. Different phases of force dominance are determined to enhance the standard stability analysis of the models, providing an explanation of model behaviour in Newtonian mechanical terms. The concepts developed are applied to well-known models from mathematical biology: the Spruce Budworm model, where force dominance identifies scenarios that give clarity to intervention points; and the Lotka–Volterra predator–prey model where the analysis highlights the importance of dissipative forces in achieving stability. Conclusions are drawn on the explanatory power of this approach, with suggestions made for future work.
Keywords: Sociophysics; Population models; Differential equations; Force; System dynamics; Feedback (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711930994X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:531:y:2019:i:c:s037843711930994x
DOI: 10.1016/j.physa.2019.121736
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().