EconPapers    
Economics at your fingertips  
 

Hubbard pair cluster with elastic interactions. Studies of thermal expansion, magnetostriction and electrostriction

T. Balcerzak and K. Szałowski

Physica A: Statistical Mechanics and its Applications, 2019, vol. 531, issue C

Abstract: The pair cluster (dimer) is studied within the framework of the extended Hubbard model and the grand canonical ensemble. The elastic interatomic interactions and thermal vibrational energy of the atoms are taken into account. The total grand potential is constructed, from which the equation of state is derived. In equilibrium state, the deformation of cluster size, as well as its derivatives, are studied as a function of the temperature and the external magnetic and electric fields. In particular, the thermal expansion, magnetostriction and electrostriction effects are examined for arbitrary temperature, in a wide range of Hamiltonian parameters.

Keywords: Hubbard model; Pair cluster; Dimer; Exact diagonalization; Grand canonical ensemble; Elastic interaction; Magnetostriction; Electrostriction (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119310015
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119310015

DOI: 10.1016/j.physa.2019.121740

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119310015