Alleviating the recommendation bias via rank aggregation
Qiang Dong,
Quan Yuan and
Yang-Bo Shi
Physica A: Statistical Mechanics and its Applications, 2019, vol. 534, issue C
Abstract:
The primary goal of a recommender system is often known as “helping users find relevant items”, and a lot of recommendation algorithms are proposed accordingly. However, these accuracy-oriented methods usually suffer the problem of recommendation bias on popular items, which is not welcome to not only users but also item providers. To alleviate the recommendation bias problem, we propose a generic rank aggregation framework for the recommendation results of an existing algorithm, in which the user- and item-oriented ranking results are linearly aggregated together, with a parameter controlling the weight of the latter ranking process. Experiment results of a typical algorithm on two real-world data sets show that, this framework is effective to improve the recommendation fairness of any existing accuracy-oriented algorithms, while avoiding significant accuracy loss.
Keywords: Recommender systems; Popularity bias; Rank aggregation; Gini coefficient (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119312051
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312051
DOI: 10.1016/j.physa.2019.122073
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().