Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects
Iskander Tlili,
M.M. Bhatti,
Samir Mustafa Hamad,
Azeez A. Barzinjy,
M. Sheikholeslami and
Ahmad Shafee
Physica A: Statistical Mechanics and its Applications, 2019, vol. 534, issue C
Abstract:
Hybrid nanofluid free convection within a permeable media was presented with CVFEM (control volume finite element method) including magnetic effect. Momentum equations have been updated with adding non-Darcy model terms. Hybrid nanoparticles (Fe3O4+MWCNT) with a base fluid of water have been considered. Impacts of Darcy number, magnetic, radiation, and Rayleigh number on migration of nanomaterial were depicted. A numerical and graphical comparison is also presented to make sure that the present analysis is correct. From the graphical results it is found that radiation parameter and magnetic boosts the Nusselt number whereas the magnetic effect shows converse relation.
Keywords: Hybrid nanofluid; Free convection; Radiation; Permeability; CVFEM; Hartmann number (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119312415
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312415
DOI: 10.1016/j.physa.2019.122136
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().