EconPapers    
Economics at your fingertips  
 

The effect of obstacle layouts on pedestrian flow in corridors: An experimental study

Siyuan Chen, Libi Fu, Jie Fang and Panyun Yang

Physica A: Statistical Mechanics and its Applications, 2019, vol. 534, issue C

Abstract: Previous research on the effect of obstacles on crowd dynamics primarily focused on relationships between the scale or position of obstacles and pedestrian movement behavior. However, the influence of different obstacle layouts on pedestrian flow in corridors has not been well investigated. Here, we conducted an experimental study on the effect of three obstacle layouts (i.e., parallel, convex and concave layouts) on pedestrian flow in corridors, creating seven scenarios for unidirectional flow and four scenarios for bidirectional flow at low and high crowd densities. The image processing method is employed to collect pedestrian trajectories. Accordingly, typical phenomena, speed, density and flow rate are obtained. It was found that in comparison with the parallel layout, average speed at high crowd density increases approximately 19% in non-parallel layouts when the distance between obstacles is 1.6 m, while the decrease rate of average passing time reaches 17%. The relationship between group speed and time is U-shaped, and group speed is reduced sharply in the parallel layout. Congestion is the severest in the parallel layout in bidirectional flow, i.e. the largest density in the parallel layout is 16% higher than that in non-parallel layouts when the longitudinal distance between obstacles is 1.6 m. Congestion is alleviated with the increasing longitudinal distance between obstacles in the non-parallel layouts. Flow rate in the non-parallel layouts (especially in the concave layout) is greater than that in the parallel layout. These results suggest that the non-parallel obstacle layouts (especially the concave layout) with larger longitudinal distance between obstacles are more beneficial to pedestrian movement, when there are obstacles in corridors. It is hoped that this study will be helpful in crowd management and pedestrian facility design.

Keywords: Pedestrian flow; Obstacle layout; Experiment; Corridor; Bottleneck (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119313354
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313354

DOI: 10.1016/j.physa.2019.122333

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313354