Effects of asymptomatic infection on the dynamical interplay between behavior and disease transmission in multiplex networks
Tianyu Shi,
Ting Long,
Yaohui Pan,
Wensi Zhang,
Chao Dong and
Qiuju Yin
Physica A: Statistical Mechanics and its Applications, 2019, vol. 536, issue C
Abstract:
Multiplex network theory is widely introduced to deepen the understanding of the dynamical interplay between self-protective behavior and epidemic spreading. Most of the existing studies assumed that all infected individuals can transmit disease- related information or can be perceived by their neighbors. However, owing to lack of distinct symptoms for patients in the initial stage of infection, the disease information cannot be transmitted in the population, which may lead to the wrong perception of infection risk and inappropriate behavior response. In this work, we divide infected individuals into Exposed-state (without obvious clinical symptoms) individuals and Infected-state (with evident clinical symptoms) individuals, both of whom can spread disease, but only Infected-state individuals can diffuse disease information. Then, in this work we establish UAU-SEIS (Unaware–Aware–Unaware–Susceptible–Exposed–Infected–Susceptible) model in multiplex networks and analyze the effect of asymptomatic infection and the isolation of Infected-state individuals on the density of infection and the epidemic threshold. Furthermore, we extend the UAU-SEIS model by taking the individual heterogeneity into consideration. Combined Markov chain approach and Monte-Carlo Simulations, we find that asymptomatic infection has an effect on the density of infected individuals and the epidemic threshold, and the extent of the effect is influenced by whether Infected-state individuals are isolated or treated. In addition, results show that the individual heterogeneity can lower the density of infected individuals, but cannot enhance the epidemic threshold.
Keywords: Multiplex network; Self-protective behavior; Disease transmission; Individual heterogeneity; Epidemic threshold; Asymptomatic infection (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119306405
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119306405
DOI: 10.1016/j.physa.2019.04.266
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().