EconPapers    
Economics at your fingertips  
 

Role of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol

M. Nawaz

Physica A: Statistical Mechanics and its Applications, 2020, vol. 537, issue C

Abstract: This articles analyses the thermal performance of mixture of ethylene glycol and hybrid nanoparticles (MoS2 and SiO2). Three dimensional heat transfer in the mixture of ethylene glycol liquid (the Sutterby rheology) and hybrid nanoparticles is modeled and obtained highly complex mathematical models are solved by finite element method (FEM). Numerical experiments are carried out to compare thermal performances of working hybrid Sutterby nanofluid (mixture of Sutterby fluid, MoS2 and SiO2) and working Sutterby nanofluid (mixture of Sutterby fluid and SiO2). The effectiveness of thermal conductivity of hybrid nano-Sutterby fluid is more than the effectiveness of thermal conductivity of nanofluid. Therefore, the usage of hybrid nanofluid in thermal and cooling systems is recommended. As in this work, it is proven that the thermal performance of hybrid nanofluid is greater than the thermal performance of nanofluid. Therefore, hybrid nanoparticles are recommended to enhance thermal performance of working fluid. Surprisingly, the momentum boundary layer thickness in hybrid Sutterby liquid is greater than in conventional working fluid or nanofluid. Eventually, a significant reduction in thermal resistance of hybrid Sutterby nano-liquid is observed. Surface heat flux for the case of hybrid nanofluid is greater than that for the case of nanofluid or base fluid.

Keywords: Thermal performance; Hybrid nanoparticles; Thermal properties; Thermal radiation; Deborah number (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119314074
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314074

DOI: 10.1016/j.physa.2019.122447

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314074