Modularized convex nonnegative matrix factorization for community detection in signed and unsigned networks
Chao Yan and
Zhenhai Chang
Physica A: Statistical Mechanics and its Applications, 2020, vol. 539, issue C
Abstract:
NMF-based models in unsigned networks, the links of which are positive links only, have been applied in many aspects, such as community detection, link prediction, etc. However, NMF has been under-explored for community discovery in signed networks due to its constraint of non-negativity. Also, there are few related studies which could find out accurate partitions on both signed and unsigned networks due to their difference of community structure. In this paper, we propose a novel modularized convex nonnegative matrix factorization model which combines signed modularized information with convex NMF model, improving the accuracy of community detection in signed and unsigned networks. As for model selection, we extend the modularity density to signed networks and employ the signed modularity density to determine the number of communities automatically. Finally, the effectiveness of our model is verified on both synthetic and real-world networks.
Keywords: Community detection; Signed modularized regularization; Modularized convex nonnegative matrix factorization; Signed modularity density (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119316486
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316486
DOI: 10.1016/j.physa.2019.122904
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().