EconPapers    
Economics at your fingertips  
 

Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China

Zhouyang Du, Jinjun Tang, Yong Qi, Yiwei Wang, Chunyang Han and Yifan Yang

Physica A: Statistical Mechanics and its Applications, 2020, vol. 539, issue C

Abstract: How to identify critical nodes in metro networks is still an open and vital topic in complex networks, which has been a key issue in analyzing the structural organization of a network, especially in public transportation. Many effective measures have been developed to solve this problem in undirected or unweighted network. However, statistical indicators of static networks cannot reflect the spatial–temporal characteristics of passenger flow in the metro network. Furthermore, a single measure in critical nodes identification has its own shortcomings causing inaccurate estimation results. In this paper, a novel method for node significance on metro network based on Improved Topological Potential model considering Entropy (ITPE) is proposed. ITPE is utilized to aggregate the multi-measure by considering several different centrality measures to conduct the evaluation of node importance. In order to fully reflect the influence of nodes, topological entropy is adopted and applied to identify the weights of different centrality measures. In addition, invulnerability measurement is used to demonstrate the effectiveness of the proposed node identification method. Finally, the metro transit system in Shenzhen City, China was used as a case study to demonstrate the feasibility of the proposed method. It is found that ITPE method could effectively identify nodes or stations which are crucial both on network structure and passenger flow mobility while traditional undirected and unweighted network cannot completely identify. Accordingly, all the nodes estimated from ITPE method are ranked by the significance, and invulnerability is further used to test the rationality of the identification for critical nodes.

Keywords: Complex network; Critical nodes; Centrality; ITPE method; Invulnerability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119316590
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316590

DOI: 10.1016/j.physa.2019.122926

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316590