CNDP: Link prediction based on common neighbors degree penalization
Samira Rafiee,
Chiman Salavati and
Alireza Abdollahpouri
Physica A: Statistical Mechanics and its Applications, 2020, vol. 539, issue C
Abstract:
In social network analysis, link prediction is a fundamental tool to determine new relationships among users which are most likely to occur in the future. Link prediction by means of a similarity metric is common in which a pair of similar nodes is likely to be connected. In this paper, we propose a similarity-based link prediction algorithm, referred to as CNDP, which similarity score is determined according to the structure and specific characteristics of the network, as well as the topological characteristics. In the proposed method, a new metric for link prediction is introduced, considering clustering coefficient as a structural property of the network. Moreover, the presented method considers the neighbors of shared neighbors in addition to only shared neighbors of each pair of nodes, which leads to achieve better performance than other similar link prediction methods. The empirical results of evaluation on synthetic and real-world networks demonstrate that the proposed algorithm achieves higher accuracy prediction results with lower complexity, and performs superior compared to other algorithms.
Keywords: Link prediction; Network topology; Similarity metric; Social networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119316711
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:539:y:2020:i:c:s0378437119316711
DOI: 10.1016/j.physa.2019.122950
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().