Asymptotic behavior of acyclic and cyclic orientations of directed lattice graphs
Shu-Chiuan Chang and
Robert Shrock
Physica A: Statistical Mechanics and its Applications, 2020, vol. 540, issue C
Abstract:
We calculate exponential growth constants describing the asymptotic behavior of several quantities enumerating classes of orientations of arrow variables on the bonds of several types of directed lattice strip graphs G of finite width and arbitrarily great length, in the infinite-length limit, denoted {G}. Specifically, we calculate the exponential growth constants for (i) acyclic orientations, α({G}), (ii) acyclic orientations with a single source vertex, α0({G}), and (iii) totally cyclic orientations, β({G}). We consider several lattices, including square (sq), triangular (tri), and honeycomb (hc). From our calculations, we infer lower and upper bounds on these exponential growth constants for the respective infinite lattices. To our knowledge, these are the best current bounds on these quantities. Since our lower and upper bounds are quite close to each other, we can infer very accurate approximate values for the exponential growth constants, with fractional uncertainties ranging from O(10−4) to O(10−2). Further, we present exact values of α(tri), α0(tri), and β(hc) and use them to show that our lower and upper bounds on these quantities are very close to these exact values, even for modest strip widths. Results are also given for a nonplanar lattice denoted sqd. We show that α({G}), α0({G}), and β({G}) are monotonically increasing functions of vertex degree for these lattices. A comparison is given of these exponential growth constants with the corresponding exponential growth constant τ({G}) for spanning trees. Our results are in agreement with inequalities following from the Merino–Welsh and Conde–Merino conjectures.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119317285
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317285
DOI: 10.1016/j.physa.2019.123059
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().