Geometric phase of the one-dimensional Ising chain in a longitudinal field
Yi Liao and
Ping-Xing Chen
Physica A: Statistical Mechanics and its Applications, 2020, vol. 540, issue C
Abstract:
For the one-dimensional Ising chain with spin-1∕2 and exchange couple J in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, the nonzero BP which depends on the exchange couple and the field strength characterizes the corresponding symmetry breaking of parity and time reversal(PT). However, there seems to exist a topological phase transition for the one-dimensional Ising chain in a longitudinal field(LF) with the reduced field strength ϵ. If the LF is added at zero temperature, researchers believe that the LF also could influence the PT-symmetry and there exists the discontinuous BP. But the theoretic characterization has not been well founded. This paper tries to aim at this problem. With the Jordan–Wigner transformation, we give the four-fermion interaction form of the Hamiltonian in the one-dimensional Ising chain with a LF. Further by the method of Wick’s theorem and the mean-field theory, the four-fermion interaction is well dealt with. We solve the ground state energy and the ground wave function in the momentum space. We discuss the BP and suggest that there exist nonzero BPs when ϵ=0 in the paramagnetic case where J<0 and when −1<ϵ<1, in the diamagnetic case where J>0.
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119317406
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119317406
DOI: 10.1016/j.physa.2019.123084
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().