Numerical simulations for stochastic differential equations on manifolds by stochastic symmetric projection method
Zhenyu Wang,
Chenke Wang,
Qiang Ma and
Xiaohua Ding
Physica A: Statistical Mechanics and its Applications, 2020, vol. 541, issue C
Abstract:
Stochastic standard projection technique, as an efficient approach to simulate stochastic differential equations on manifolds, is widely used in practical applications. However, stochastic standard projection methods usually destroy the geometric properties (such as symplecticity or reversibility), even though the underlying methods are symplectic or symmetric, which seriously affect long-time behavior of the numerical solutions. In this paper, a modification of stochastic standard projection methods for stochastic differential equations on manifolds is presented. The modified methods, called the stochastic symmetric projection methods, remain the symmetry and the ρ-reversibility of the underlying methods and maintain the numerical solutions on the correct manifolds. The mean square convergence order of these methods are proved to be the same as the underlying methods’. Numerical experiments are implemented to verify the theoretical results and show the superiority of the stochastic symmetric projection methods over the stochastic standard projection methods.
Keywords: Stochastic differential equations; Manifolds; Stochastic symmetric projection methods; Conserved quantity; Mean square convergence (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318515
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:541:y:2020:i:c:s0378437119318515
DOI: 10.1016/j.physa.2019.123305
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().