Neural network forecasting in prediction Sharpe ratio: Evidence from EU debt market
Darko Vuković (),
Yaroslav Vyklyuk,
Natalia Matsiuk and
Moinak Maiti
Physica A: Statistical Mechanics and its Applications, 2020, vol. 542, issue C
Abstract:
This study analyzes a neural networks model that forecast Sharpe ratio. The developed neural networks model is successful to predict the position of the investor who will be rewarded with extra risk premium on debt securities for the same level of portfolio risk or a greater risk premium than proportionate growth risk. The main purpose of the study is to predict highest Sharpe ratio in the future. Study grouped the data on yields of debt instruments in periods before, during and after world crisis. Results shows that neural networks is successful in forecasting nonlinear time lag series with accuracy of 82% on test cases for the prediction of Sharpe-ratio dynamics in future and investor‘s portfolio position.
Keywords: Risk; Returns; Neural networks; Sharpe ratio (search for similar items in EconPapers)
JEL-codes: C88 G20 G23 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318655
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318655
DOI: 10.1016/j.physa.2019.123331
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().