Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios
Ryosuke Nishi
Physica A: Statistical Mechanics and its Applications, 2020, vol. 542, issue C
Abstract:
There has been considerable interest in the active maneuvers made by a small number of vehicles to improve macroscopic traffic flows. Jam-absorption driving (JAD) is a single vehicle’s maneuvers to remove a wide moving jam and consists of two actions. First, a vehicle upstream of the jam slows down and maintains a low velocity. Because it cuts off the supply of vehicles to the jam, the jam shrinks and finally disappears. Second, it returns to following the vehicle ahead of it. One of the critical problems of JAD is the occurrence of secondary jams. The perturbations caused by JAD actions may grow into secondary jams due to the instability of traffic flows. The occurrence of secondary jams was investigated by numerical simulations in non-periodic systems where only human-driven vehicles are placed upstream of the vehicle performing JAD. However, no theoretical condition has been proposed to restrict secondary jams in these systems. This paper presents a theoretical condition restricting secondary jams in a semi-infinite system composed of a vehicle performing JAD and the other human-driven vehicles obeying a car-following model on a non-periodic and single-lane road. In constructing this condition, we apply the linear string stability to a macroscopic spatiotemporal structure of JAD. Numerical simulations show that a finite version of this condition restricts secondary jams. Moreover, under this condition, we demonstrate that it is possible to restrict secondary jams in the semi-infinite system under wide ranges of the parameters of the system. We also extend this condition to a condition with a time lag for estimating the characteristics of the jam, and reveal the influence of the time lag on the behavior of the system. Furthermore, we construct the conditions suppressing secondary jams in other semi-infinite systems with inflows from other lanes or a bottleneck, and demonstrate that JAD can restrict secondary jams in these systems. Thus, our method theoretically guarantees that a single vehicle can improve macroscopic traffic flows.
Keywords: Highway traffic flow; Jam-absorption driving; Secondary jams; Linear string stability; Car-following behaviors (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318965
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:542:y:2020:i:c:s0378437119318965
DOI: 10.1016/j.physa.2019.123393
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().