Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator
Xin Zhao and
Zhijun Zeng
Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C
Abstract:
In this paper, we deal with a stochastic predator–prey model with stage structure for predator population and ratio-dependent functional response. The proposed mathematical model consists of a system of three stochastic differential equations to stimulate the interactions between prey population, immature predator and mature predator population. We first establish sufficient conditions for the existence and uniqueness of the positive solutions by constructing an appropriate Lyapunov function. Then we extend the existence of stationary distribution under certain parametric restrictions. We also obtain the sufficient conditions for extinction of the predator populations. Finally, numerical simulations have been carried out to validate our analytical findings.
Keywords: Stationary distribution; Extinction; Stochastic predator–prey system; Stage structure (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119318540
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119318540
DOI: 10.1016/j.physa.2019.123310
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().