EconPapers    
Economics at your fingertips  
 

Automatic generation of adaptive network models based on similarity to the desired complex network

Niousha Attar, Sadegh Aliakbary and Zahra Hosseini Nezhad

Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C

Abstract: Complex networks have become powerful mechanisms for studying a variety of real-world systems. Consequently, many human-designed network models are proposed that reproduce nontrivial properties of complex networks, such as long-tail degree distribution or high clustering coefficient. Therefore, we may utilize network models in order to generate graphs similar to desired networks. However, a desired network structure may deviate from emerging structure of any generative model, because no selected single model may support all the needed properties of the target graph and instead, each network model reflects a subset of the required features. In contrast to the classical approach of network modeling, an appropriate modern network model should adapt the desired features of the target network. In this paper, we propose an automatic approach for constructing network models that are adaptive to the desired network features. We employ Genetic Algorithms in order to evolve network models based on the characteristics of the target networks. The experimental evaluations show that our proposed framework, called NetMix, results network models that outperform state-of-the-art baseline models according to the compliance with the desired features of the target networks.

Keywords: Complex network; Network model; Automatic model construction; Model composition; Genetic algorithm; Social networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711931876X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s037843711931876x

DOI: 10.1016/j.physa.2019.123353

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s037843711931876x