Computing fractal descriptors of texture images using sliding boxes: An application to the identification of Brazilian plant species
Giovanni Taraschi and
Joao B. Florindo
Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C
Abstract:
This work proposes a new model based on fractal descriptors for the classification of grayscale texture images. The method consists of scanning the image with a sliding box and collecting statistical information about the pixel distribution. Varying the box size, an estimation of the fractality of the image can be obtained at different scales, providing a more complete description of how such parameter changes in each image. The same strategy is also applied to a especial encoding of the image based on local binary patterns. Descriptors both from the original image and from the local encoding are combined to provide even more precise and robust results in image classification. A statistical model based on the theory of sliding window detection probabilities and Markov transition processes is formulated to explain the effectiveness of the method. The descriptors were tested on the identification of Brazilian plant species using scanned images of the leaf surface. The classification accuracy was also verified on three benchmark databases (KTH-TIPS2-b, UIUC and UMD). The results obtained demonstrate the power of the proposed approach in texture classification and, in particular, in the practical problem of plant species identification.
Keywords: Box-counting; Fractal descriptors; Texture classification; Automatic plant taxonomy (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119320370
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320370
DOI: 10.1016/j.physa.2019.123651
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().