Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations
Nosheen Pervaiz and
Imran Aziz
Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C
Abstract:
In this study, Haar wavelet collocation method is used for the numerical solution of 1D and 2D cubic nonlinear Schrodinger equations with initial and Dirichlet boundary conditions. The space derivatives are estimated through Haar wavelet collocation method whereas for time derivative we have used Crank–Nicolson scheme. The proposed method is implemented upon several test problems and the numerical results of these test problems establish that the proposed method is accurate.
Keywords: Haar wavelet; Schrodinger equation; Crank–Nicolson method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119320837
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320837
DOI: 10.1016/j.physa.2019.123738
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().