Analysis and prediction in sparse and high dimensional text data: The case of Dow Jones stock market
Onur Can Sert,
Salih Doruk Şahin,
Tansel Özyer and
Reda Alhajj
Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C
Abstract:
In this research, we proposed a text analysis system to predict stock market movements using news and social media data. It is a scalable prediction system for sparse and high dimensional feature sets. Using the developed system, we collected 12,560 articles from New York Times covering one year time period, and 2,854,333 tweets from Twitter covering 4 months time period. We analysed the collected data using entity extraction, sentiment analysis and topic modelling techniques. We applied our feature set creation and elastic net regression based training method . The analyses have been used to train different prediction models. Using these trained prediction models, we predicted stock market movements for Dow Jones Index and showed that the proposed method can make promising predictions. In different sets of experiments, highly accurate (up to 70.90% accuracy) predictions are made by the proposed approach. These predicted values also correlated (up to 0.2315 correlation coefficient value) with real Dow Jones Index values. Further, we report performance comparison results for various prediction models that we trained with different set of features to analyse the importance of time interval and feature space size. Our test results show that it is possible to make reasonable stock movement prediction by integrating news and related social media data, analysing them using named entity extraction, sentiment analysis and topic modelling techniques together with prediction models which use features that are created from these analysis results.
Keywords: Named entity recognition; Topic modelling; Sentiment analysis; Social network analysis; Stock market movement prediction; Msaenet (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119320904
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119320904
DOI: 10.1016/j.physa.2019.123752
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().