EconPapers    
Economics at your fingertips  
 

Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium

A. Riaz, A. Zeeshan, M.M. Bhatti and R. Ellahi

Physica A: Statistical Mechanics and its Applications, 2020, vol. 545, issue C

Abstract: In this article, a computational study has been performed on the peristaltic propulsion of nanofluid flow through a porous rectangular duct. A non-Newtonian fluid model, i.e. Jeffrey model is considered to examine the behavior of nanoparticles. A Cartesian coordinate system is adopted for the three-dimensional duct. Furthermore, the three-dimensional rectangular duct contains porous wavy walls. An approximation of long wavelength and small Reynolds number have been applied to formulate the governing equations of momentum, energy, continuity, and concentration equation. These resulting coupled partial differential equations are further solved using Homotopy perturbation method and Genetic algorithm with a combination of Nelder Mead method. The purpose of the Genetic algorithm and Nelder Mead method is to reduce the residual error. For this purpose, numerical comparison of residual error is presented with a Homotopy perturbation method.

Keywords: Peristaltic flow; Nanoparticles; Rectangular duct; Genetic algorithm; Nelder mead; Homotopy perturbation method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119321090
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321090

DOI: 10.1016/j.physa.2019.123788

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321090