Prediction of the pressure drop for CuO/(Ethylene glycol-water) nanofluid flows in the car radiator by means of Artificial Neural Networks analysis integrated with genetic algorithm
Mohammad Hossein Ahmadi,
Mahyar Ghazvini,
Heydar Maddah,
Mostafa Kahani,
Samira Pourfarhang,
Amin Pourfarhang and
Saeed Zeinali Heris
Physica A: Statistical Mechanics and its Applications, 2020, vol. 546, issue C
Abstract:
In this investigation, neural networks were used to predict pressure drop of CuO-based nanofluid in a car radiator. For this purpose, the neural network with the multilayer perceptron structure was used to formulate a model for estimating the pressure drop In this way, different concentrations of copper oxide-based nanofluid were prepared. The base fluid was the mixture of ethylene glycol and pure water (60:40 wt%) which usually used as the cooling fluid in automotive industries. The prepared nanofluid samples were used in a car radiator and the pressure drop of nanofluid flows in the system at different Reynolds were measured. The main purpose of this study was developing the optimized neural networks for predicting the pressure drop of the system with sufficient precision. For the aim of designing the model’s structure, different neural networks were constructed and applied by changing the adjustable parameters (containing the transfer function, training rule, momentum’s amount, hidden layers’ number and the neurons’ number in hidden layer). In each case, the structure with the highest correlation coefficient was chosen as the final model. The selection of each parameters in the neural network model requires repeated tests and errors. So, genetic algorithm was used to optimize these parameters. Additionally, the pressure drop in the radiator of this method was investigated in neural network optimization. The outcomes indicated which a high accuracy in modeling and estimating the pressure drop of nanofluid flows in the studied system can be achieved by the neural network.
Keywords: Pressure drop; Nanofluid flows; Car radiator; Neural network; Genetic algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119322186
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:546:y:2020:i:c:s0378437119322186
DOI: 10.1016/j.physa.2019.124008
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().