Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm
Guven Kaya,
Senol Kartal and
Fuat Gurcan
Physica A: Statistical Mechanics and its Applications, 2020, vol. 547, issue C
Abstract:
In this paper, conformable fractional order differential equations with piecewise constant arguments are used for a modeling population density of a bacteria species in a microcosm. The discretization process of a differential equation with piecewise constant arguments gives us two dimensional discrete dynamical system in the interval t∈[nh,(n+1)h). By using the center manifold theorem and the bifurcation theory, it is shown that the discrete dynamical system undergoes flip and Neimark–Sacker bifurcation depending on the parameter r. It is observed that the model describes some biological phenomena for a bacteria population such as homogeneous bacteria distributions and inhomogeneous spatial population distributions. In addition, the effect of fractional order derivative on dynamic behavior of the system is investigated. Finally, all theoretical results are supported by numerical simulations.
Keywords: Conformable fractional derivative; Piecewise constant arguments; Stability; Flip and Neimark–Sacker bifurcation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119321478
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437119321478
DOI: 10.1016/j.physa.2019.123864
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().