Modularity and projection of bipartite networks
Rudy Arthur
Physica A: Statistical Mechanics and its Applications, 2020, vol. 549, issue C
Abstract:
This paper investigates community detection by modularity maximisation on bipartite networks. In particular we are interested in how the operation of projection, using one node set of the bipartite network to infer connections between nodes in the other set, interacts with community detection. We first define a notion of modularity appropriate for a projected bipartite network and outline an algorithm for maximising it in order to partition the network. Using both real and synthetic networks we compare the communities found by five different algorithms, where each algorithm maximises a different modularity function and sees different aspects of the bipartite structure. Based on these results we suggest a simple ‘rule of thumb’ for finding communities in bipartite networks.
Keywords: Networks; Community detection; Bipartite; Modularity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120301151
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120301151
DOI: 10.1016/j.physa.2020.124341
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().