Dual solutions of nanaofluid forced convective flow with heat transfer and porous media past a moving surface
M. Ferdows and
Faris Alzahrani
Physica A: Statistical Mechanics and its Applications, 2020, vol. 551, issue C
Abstract:
The paper presents a numerical study to explore the possible similarity solutions as well as dual branch solutions to study the performance evaluation of various nanoparticles associated water as the base fluid in the case of steady two-dimensional forced convection boundary layer flow through a moving flat porous plate under external magnetic fields. We considered water as a base fluid embedded with the three different types of nanoparticles namely copper (Cu), alumina (Al2O3) and titania (TiO2). The governing equations are simplified by similarity approach. The resulting equations are solved numerically and the numerical results are explored through graphs and tables and discussed in detail. The influences of problem parameters are discussed for the steady solution. The paper extends results of previous works by others authors contributing to increase the scientific knowledge on the subject. The skin friction coefficient and local Nusselt number on the plane are studied as functions of the problem parameters. The study reveals that the problem considered admits of upper and lower branch solutions for moving parameter λ, magnetic parameter M, the power law parameter n, convection heat transfer b and nanoparticle volume fraction parameter ϕ.
Keywords: Convective surface; MHD; Nanofluid; Forced convection; Dual solutions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437119322526
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437119322526
DOI: 10.1016/j.physa.2019.124075
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().