A mixed solution-based high agreement filtering method for class noise detection in binary classification
Maryam Samami,
Ebrahim Akbari,
Moloud Abdar,
Pawel Plawiak,
Hossein Nematzadeh,
Mohammad Ehsan Basiri and
Vladimir Makarenkov
Physica A: Statistical Mechanics and its Applications, 2020, vol. 553, issue C
Abstract:
Classification of noisy data has been a longstanding topic in data mining and machine learning. Many scientists have proposed effective methods to detect and eliminate such data in diverse real-world datasets. In this paper, we deal with mislabeled instances in supervised learning, including majority voting filtering and consensus voting filtering. The majority voting procedure usually incorrectly identifies many correct instances as noisy, whereas the consensus voting procedure is not able to detect at all many noisy instances. Our new method minimizes the majority and consensus filtering weaknesses by providing a novel class noise detection strategy, namely a high agreement voting filtering with mixed strategy, which proceeds by removing strong and semi-strong noisy records from the dataset as well as by relabeling weak noisy data. The proposed method, designed for binary classification problems, outperforms the high agreement voting filtering procedure. Extensive experiments conducted with 16 real datasets, using four noise filtering methods with two levels of class noise (10% and 15%), prove the superiority of the proposed methodology.
Keywords: Data mining; High agreement voting filtering; Classification; Removing; Relabeling; Class noise detection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120300492
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120300492
DOI: 10.1016/j.physa.2020.124219
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().