EconPapers    
Economics at your fingertips  
 

Dynamics in a confined mass–spring chain with 1∕r repulsive potential: Strongly nonlinear regime

Edgar Avalos, Amitava Datta, Anthony D. Rosato, Denis Blackmore and Surajit Sen

Physica A: Statistical Mechanics and its Applications, 2020, vol. 553, issue C

Abstract: We present a study of the dynamics of a system of masses connected by springs and repelling by a 1∕r potential in 1D. The present study focuses on the dynamics in the regime where the repulsive force dominates the dynamics of the system. We conjecture that such a system may be approximately modeled by an alignment of repelling rigid bar magnets that are sufficiently far apart from each other. We show that except for cases where the repulsive potential is very weak, most of the energy due to a velocity perturbation at system initiation of magnitude v0(0) generates a propagating solitary wave in the system. Dynamical simulations show that this solitary wave shows no measurable tendency to thermalize over extended simulation time scales, thereby yielding an effectively non-ergodic system. Part of the energy generates low-amplitude persistent oscillations which do not show any measurable interaction with the solitary wave. We find that the solitary wave propagation speed vSW∝v02 for various coupling strengths. We further demonstrate that owing to the repulsion between the adjacent particles, these solitary waves are mutually repulsive, i.e., they cannot cross each other and hence there is no phase change associated with their mutual interactions. We use the data driven Dynamic Mode Decomposition technique to develop a simple approximate way to represent the propagating solitary wave. Additionally, we compute fluctuations in the kinetic energy of the system at late times and show that the energy fluctuations increase drastically when the effects of v0 and the coupling associated with the repulsive interactions become competitive.

Keywords: Nonlinear dynamics; Solitary waves; Collision of solitary waves; Ergodic system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120303150
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303150

DOI: 10.1016/j.physa.2020.124651

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120303150