Identifying influential spreaders in complex networks based on improved k-shell method
Min Wang,
Wanchun Li,
Yuning Guo,
Xiaoyan Peng and
Yingxiang Li
Physica A: Statistical Mechanics and its Applications, 2020, vol. 554, issue C
Abstract:
Identifying influential spreaders in complex networks is a fundamental network project. It has drawn great attention in recent years because of its great theoretical significance and practical value in some fields. K-shell is an efficient method for identifying influential spreaders. However, k-shell neglects information about the topological position of the nodes. In this paper, we propose an improved algorithm based on the k-shell and node information entropy named IKS to identify influential spreaders from the higher shell as well as the lower shell. The proposed method employs the susceptible–infected–recovered (SIR) epidemic model, Kendall’s coefficient τ, the monotonicity M, and the average shortest path length Ls to evaluate the performance and compare with other benchmark methods. The results of the experiment on eight real-world networks show that the proposed method can rank the influential spreaders more accurately. Moreover, IKS has superior computational complexity and can be extended to large-scale networks.
Keywords: Complex network; Influential spreaders; Improved k-shell; Node information entropy; SIR epidemic model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120300558
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:554:y:2020:i:c:s0378437120300558
DOI: 10.1016/j.physa.2020.124229
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().