EconPapers    
Economics at your fingertips  
 

Fractal teletraffic delay bounds in computer networks

Ming Li and Anqi Wang

Physica A: Statistical Mechanics and its Applications, 2020, vol. 557, issue C

Abstract: The computation of teletraffic (traffic for short) delay bound is crucial to the guaranteed quality of service in computer communication networks. Traditional non-fractal bounds of traffic delay are loose so that network resources may be over-required for guaranteed quality of service. How to obtain a tighter bound of traffic delay, in fact, is an open problem. This paper gives a solution to that problem by proposing four fractal delay bounds of traffic. We will show that the present fractal delay bounds are tighter than the conventional non-fractal ones.

Keywords: Traffic delay; Fractal dimension; Long-range dependence; Burstiness; Long-term average rate; Network calculus; Cyber physical systems; Computer networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120304672
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304672

DOI: 10.1016/j.physa.2020.124903

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304672