Intelligent forecasting of inbound tourist arrivals by social networking analysis
Fong-Ching Yuan
Physica A: Statistical Mechanics and its Applications, 2020, vol. 558, issue C
Abstract:
Tourism is very important for many countries. Many tourism demand forecasting methodologies are continuously being proposed. Most studies have used lagging economic factors as predictors, but these can cause an inaccurate prediction when unexpected events happen. In this study, a tourism social network will be used in our forecasting model. In addition, a least square support vector regression with genetic algorithm will be developed to predict the monthly tourist arrivals. Grey Relational Analysis indicates that the model outperforms the comparison models, and the null hypothesis of the predicted series having the same mean of the actual series is accepted. The experimental results indicate that the predictors from social network are excellent alternatives to economic indicators.
Keywords: Tourism demand forecasting; Least square support vector regression; Genetic algorithm; Social network; Grey relational analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120304933
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:558:y:2020:i:c:s0378437120304933
DOI: 10.1016/j.physa.2020.124944
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().