EconPapers    
Economics at your fingertips  
 

Thermodynamic properties of SnO2/GaAs core/shell nanofiber

M. Kria, K. Feddi, N. Aghoutane, M. El-Yadri, L.M. Pérez, D. Laroze, F. Dujardin and E. Feddi

Physica A: Statistical Mechanics and its Applications, 2020, vol. 560, issue C

Abstract: We provide a comprehensive computational investigation concerning the effects of confinement and temperature on the thermodynamic properties of cylindrical core/shell quantum dots with a large band offset. This model can also be applied to hollow cylindrical quantum dots or nanofibers. Within the framework of the effective mass approximation, we solve the Schrödinger equation analytically in two bands model, determining the energies of all excited states. Following Boltzmann–Gibbs distribution and introducing the canonical partition function, energy states are used to evaluate the thermodynamic properties: the mean energy, heat capacity, entropy, and Helmholtz free energy. Our numerical calculation shows that all thermodynamic properties depend on the temperature, the size of the dot, and the shell thickness. According to our numerical results, it is found that in the narrow shell case, the heat capacity shows a Schottky-like anomaly at low temperatures, but this effect disappears for small values of core radius. Another important conclusion, is that the determination of the Helmholtz free energy makes it possible to predict the thermodynamic stability of quantum dots. We also show that the competition between the temperature, the core dimension, and the shell thickness influences the thermodynamic stability. Despite the simplicity of our approach, our study can be considered as a useful information source and as an excellent qualitative indicator for understanding the thermodynamic properties of quantum dots.

Keywords: Core – shell; Nanofiber; Heat capacity; Entropy; Helmholtz energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712030577X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030577x

DOI: 10.1016/j.physa.2020.125104

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s037843712030577x