Pedestrian behavior prediction model with a convolutional LSTM encoder–decoder
Kai Chen,
Xiao Song,
Daolin Han,
Jinghan Sun,
Yong Cui and
Xiaoxiang Ren
Physica A: Statistical Mechanics and its Applications, 2020, vol. 560, issue C
Abstract:
Pedestrian behavior modeling is a challenging problem especially in crowded transportation scenarios. Some recent studies have addressed this problem using deep neural network, but the accuracy of trajectory prediction is still not high because the internal structure of the typical deep neural network with long short-term memory (LSTM) is a one-dimensional vector, which destroys the spatial information around a pedestrian. Therefore, these models cannot fully learn spatial sensing behavior of pedestrians. To solve this, we recommend using multi-channel tensors to represent the environmental information of pedestrians. Meanwhile, the spatiotemporal interactions among the pedestrians are represented by convolution operations of these tensors. Then, an end-to-end fully convolutional LSTM encoder–decoder is designed, trained and tested. Finally, our approach is compared with existing LSTM-based methods using five crowded video sequences with public datasets. The results show that our method reduces the displacement offset error and provides more realistic trajectory prediction in manifold cases.
Keywords: Pedestrian behavior model; Trajectory prediction; Long short-term memory; Convolution; Encoder–decoder (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120305926
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:560:y:2020:i:c:s0378437120305926
DOI: 10.1016/j.physa.2020.125132
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().