Information parity in complex networks
Aline Viol,
Vesna Vuksanović and
Philipp Hövel
Physica A: Statistical Mechanics and its Applications, 2021, vol. 561, issue C
Abstract:
A growing interest in complex networks theory results in an ongoing demand for new analytical tools. We propose a novel quantity based on information theory that provides a new perspective for a better understanding of networked systems: Termed ”information parity”, it quantifies the consonance of influence among nodes with respect to the whole network architecture. Considering the statistics of geodesic distances, information parity assesses how similarly a pair of nodes can influence and be influenced by the network. This allows us to quantify the access of information gathered by the nodes. To demonstrate the method’s potential, we evaluate a social network and human brain networks. Our results indicate that emerging phenomena like an ideological orientation of nodes in social networks can be detected by their information parities. We also show the potential of information parity to identify central network regions in structural brain networks placed near mid-sagittal plane. We find that functional networks have, on average, greater information parity for inter-hemispheric homologous regions in comparison to the whole network. This property of information parity suggests that the functional correlations between regional activities could be explained by the symmetry of their overall influences on the whole brain.
Keywords: Complex networks; Topology; Information theory; Symmetry; Brain networks; Social networks (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120306506
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:561:y:2021:i:c:s0378437120306506
DOI: 10.1016/j.physa.2020.125233
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().