Irreversibility and entropy production of a thermally driven micromachine
Isamu Sou,
Yuto Hosaka,
Kento Yasuda and
Shigeyuki Komura
Physica A: Statistical Mechanics and its Applications, 2021, vol. 562, issue C
Abstract:
We discuss the non-equilibrium properties of a thermally driven micromachine consisting of three spheres which are in equilibrium with independent heat baths characterized by different temperatures. Within the framework of a linear stochastic Langevin description, we calculate the time-dependent average irreversibility that takes a maximum value for a finite time. This time scale is roughly set by the spring relaxation time. The steady-state average entropy production rate is obtained in terms of the temperatures and the friction coefficients of the spheres. The average entropy production rate depends on thermal and/or mechanical asymmetry of a three-sphere micromachine. We also obtain the center of mass diffusion coefficient of a thermally driven three-sphere micromachine as a function of different temperatures and friction coefficients. With the results of the total entropy production rate and the diffusion coefficient, we finally discuss the efficiency of a thermally driven micromachine.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120306749
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120306749
DOI: 10.1016/j.physa.2020.125277
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().