EconPapers    
Economics at your fingertips  
 

Centrality-based measures of financial institutions’ systemic importance: A tail dependence network view

Dan Wang and Wei-Qiang Huang

Physica A: Statistical Mechanics and its Applications, 2021, vol. 562, issue C

Abstract: This study measures systemic importance of financial institutions based on network centralities and links them to institutions’ characteristics. We focus on the lower tail dependence networks constructed by combining Clayton copula model and planar maximally filtered graph method. Considering different centrality measures’ correlations, we obtain the comprehensive centrality index about systemic importance by principal component analysis. The centrality measures can capture cross-sectional differences and time-series variations of systemic importance. The financial institutions with higher leverage, lower price earning ratio, lower total assets turnover rate and lower return on equity tend to have higher systemic importance based on tail dependence.

Keywords: Tail dependence network; Systemic importance; Copula; Network centrality; Panel regression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307081
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120307081

DOI: 10.1016/j.physa.2020.125345

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:562:y:2021:i:c:s0378437120307081