Association of Lennard-Jones particles in nanoconfined aqueous solution: Theory and molecular dynamics simulations
Liang Zhao,
Zhimin Shi,
Qinyu Qian,
Jingqiu Song,
Qian Chen,
Jinge Yang,
Chunlei Wang and
Yusong Tu
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
We develop a new Gibbs free energy-based association model and perform series of molecular dynamics (MD) simulations to study the association behavior of Lennard-Jones (LJ) particles in nanoconfined aqueous solution. In the association model, the total Gibbs free energy is the sum of free energy cost in the nucleation of a densely packed cluster with an isotropic shape and a radius dependent interfacial tension coefficient, and the translation entropy of dispersed particles outside the cluster. Two key theoretical expressions – total Gibbs free energy formula and the thermodynamic equilibrium equation – are obtained to estimate the cluster aggregation number for a given LJ particle number and the corresponding total Gibbs free energy. Using MD simulations, we observe that the association state transforms from the stable dispersion state, through the reversible state, finally to the stable aggregation state as the LJ particle number increases. In the reversible state, the system reversibly switch in between the dispersion and aggregation states. The existence of three types of association states is also found for LJ particles with the varied well depth. According to our model, the Gibbs free energy curve shows from a single minimum, through two minima, finally to a single minimum, leading to the transformation of association states. The occurrence of reversible state transition is attributed to the free energy barrier of the order of thermal fluctuation in water between the dispersion and aggregation states. These findings deepen the understanding of nucleation/aggregation of hydrophobic gas molecules or particles in solution under nanoconfinement.
Keywords: Lennard-Jones particles; Solute association; Nanoconfinement; Aqueous solution; Molecular dynamics simulations (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307512
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307512
DOI: 10.1016/j.physa.2020.125414
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().