A three-stage algorithm for local community detection based on the high node importance ranking in social networks
Saeid Aghaalizadeh,
Saeid Taghavi Afshord,
Asgarali Bouyer and
Babak Anari
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
Community detection aims to discover and reveal community structures in complex networks. Some community detection method is called local methods that only apply local information in discovering steps. Local community detection methods are actually an attempt to increase efficiency in large-scale networks. Most of local community detection methods concentrate on finding the important nodes as initial communities. The quality of the detected communities fundamentally depends on the selected important nodes as community cores. Most of the existing works have disadvantages such as low accuracy, weak scalable, and instability in outcomes that makes the algorithm to detect different communities in each run. In order to solve these problems, this paper proposes a novel local community detection based on high importance nodes Ranking (LCDR). In the proposed algorithm, a new index for computing node importance is presented. With regards to the network locality, the proposed index can fully reflect the node importance of all nodes in the network. LCDR method initially selects important nodes to expand the initial communities based on a local similarity criterion until all nodes become members of one of the communities. Finally, it merges the discovered communities to form final community structures. Experiments on real and synthetic networks show that LCDR can significantly improve the accuracy of communities. Correspondingly, it is promising in different settings based on accuracy and modularity with near-linear time complexity.
Keywords: Community detection; Local algorithm; Nodes ranking; Near-linear time complexity; Social networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307548
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307548
DOI: 10.1016/j.physa.2020.125420
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().