Incorporating affiliation preference into overlapping community detection
Liang Feng,
Qianchuan Zhao and
Cangqi Zhou
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
Community detection is an important way to understand structures of complex networks. Many conventional methods assume that each node only belongs to one community. However, nodes may have multiple memberships in real-world networks. Recently, overlapping community detection has attracted lots of attention. With the good interpretability of latent vectors, in this paper, we improve non-negative matrix factorization method by incorporating affiliation preference. Other than directly approximating original adjacent matrix of network, our proposed Bayesian Affiliation Preference based Non-negative Matrix Factorization (BAPNMF) method maximizes the likelihood of affiliation preferences for all nodes. The intuition is that nodes prefer their neighbors than non-neighbors. We define the edge preference possibility which satisfies the totality based on generative affiliation model. In the learning phase, stochastic gradient descent with bootstrap sampling is adopted. We evaluated on both synthetic and real-world networks, and results show our method outperforms state-of-art algorithms and is scalable for large-scale networks.
Keywords: Overlapping community detection; Bayesian preference; Non-negative matrix factorization; Affiliation model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307585
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307585
DOI: 10.1016/j.physa.2020.125429
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().