An approximation by Parrondo games of the Brownian ratchet
Mi Jung Song and
Jiyeon Lee
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
The Brownian ratchet is a diffusion process that represents the dynamics of a Brownian particle moving toward a minimum of an asymmetric sawtooth potential. It motivated Parrondo’s paradox, in which two losing games can be combined in a certain manner to achieve a winning outcome. Recently it has been found that the Brownian ratchet can be approximated by discrete-time random walks with state-dependent transition probabilities derived from corresponding Parrondo games. We study the discretized Fokker–Planck equation of the Brownian ratchet so that we can determine whether the approximating Parrondo game is fair through tilting of the potential function. A fair Parrondo game corresponds to a periodic untilted potential function whereas a winning or losing Parrondo game induces a tilted potential function. As a result, we provide transition probabilities of a random walk that can be used to approximate a diffusion process with a periodic piecewise constant drift coefficient.
Keywords: Brownian ratchet; Parrondo’s paradox; Periodic pattern; Potential function; Random mixture (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307718
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307718
DOI: 10.1016/j.physa.2020.125454
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().