Simple estimation method for the largest Lyapunov exponent of continuous fractional-order differential equations
Shuang Zhou and
Xingyuan Wang
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
In this paper, a simple method based on the perturbation of the initial value is presented to directly estimate the largest Lyapunov exponent (LLE) from continuous fractional-order differential equations. Two nearby trajectories are used to directly compute the LLE and reduce parameter errors. Another initial value is obtained by perturbing the given initial value. Two solutions are then developed from a fractional-order chaotic system by using the two initial values. The evolutionary distance between the two solutions is calculated, and the LLE is determined from the curve of the track distance. Some continuous fractional-order chaotic and nonchaotic differential equations are applied to verify the effectiveness of our method. Experimental results indicate that the proposed method is feasible and easy to implement instead of computing the Jacobian matrix and phase space.
Keywords: Largest Lyapunov exponent; Fractional-order chaotic equations; Chaos (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307834
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307834
DOI: 10.1016/j.physa.2020.125478
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().