Time dependent correlations between the probability of a node being infected and its centrality measures
Semra Gündüç and
Recep Eryiğit
Physica A: Statistical Mechanics and its Applications, 2021, vol. 563, issue C
Abstract:
Pandemics are a growing world-wide threat for all societies. Throughout history, various infectious diseases presented widely spread damage to human life, economic viability and general well-being. The scale of destruction of the most recent pandemic, COVID-19, has yet to be seen. This work aims to introduce intervention methodology for the prevention of global scale spread of infectious diseases. The proposed method combines time-dependent infection spreading data with the social connectivity structure of the society. SIR model simulations provided the dynamic of contamination spread in different sets of network data. Seven centrality measures parameterized the local and global importance of each node in the underlying network. At each time step the calculated values of the correlations between node infection probability and node centrality values are analyzed. Calculations show that correlations increase at the beginning of infection spread and reaches its highest value when spreading starts to become an epidemic. The peak is at the very early stages of the spreading; and with this analysis, it is possible to predict the node infection probability from time-dependent correlations data.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120307858
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:563:y:2021:i:c:s0378437120307858
DOI: 10.1016/j.physa.2020.125483
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().