Exploring the optimal network topology for spreading dynamics
Dong Wang,
Michael Small and
Yi Zhao
Physica A: Statistical Mechanics and its Applications, 2021, vol. 564, issue C
Abstract:
Complex networks are a useful method to model many real-world systems from society to biology. Spreading dynamics of complex networks has attracted more and more attention and is currently an area of intense interest. In this study, by applying a perturbation approach to an individual-based susceptible–infected–susceptible (SIS) model, we derive an estimation of the incremental spreading prevalence after the network adds a single link and then propose a strategy to find the corresponding optimal link to promote spreading prevalence. Through theoretical analysis, we notice that the proposed strategy can be approximately interpreted by the eigenvector centrality when the infection probability is near the spreading critical point. By comparing the incremental prevalence of several typical synthetic and real networks, we find that the proposed strategy is superior to other methods such as linking nodes with the highest degree and eigenvector centrality. Moreover, the optimal link structure has degree mixing characteristics distinguishable for different spreading parameters. We further demonstrate this finding based on the degree-preserving network configuration model with different rich-club and assortativity coefficients.
Keywords: Complex networks; Spreading dynamics; Perturbation method; SIS model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120308335
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308335
DOI: 10.1016/j.physa.2020.125535
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().